Subgroup ($H$) information
Description: | $C_7^4:(C_2\times S_4)$ |
Order: | \(115248\)\(\medspace = 2^{4} \cdot 3 \cdot 7^{4} \) |
Index: | \(8\)\(\medspace = 2^{3} \) |
Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
Generators: |
$\langle(2,7)(3,6)(4,5)(15,23,19,26)(16,22,18,27)(17,28)(20,25,21,24), (9,14)(10,13) \!\cdots\! \rangle$
|
Derived length: | $4$ |
The subgroup is nonabelian and solvable. Whether it is monomial has not been computed.
Ambient group ($G$) information
Description: | $D_7\wr S_4$ |
Order: | \(921984\)\(\medspace = 2^{7} \cdot 3 \cdot 7^{4} \) |
Exponent: | \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
Derived length: | $5$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_7^4.C_2^3.(C_6\times S_4)$, of order \(2765952\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7^{4} \) |
$\operatorname{Aut}(H)$ | $C_7^3.(C_7\times A_4).C_6^2.C_2$ |
$W$ | $C_7^3.A_4.C_2^2\times D_7$, of order \(230496\)\(\medspace = 2^{5} \cdot 3 \cdot 7^{4} \) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $4$ |
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $1$ |
Projective image | $D_7\wr S_4$ |