Properties

Label 921984.a.48.bo1
Order $ 2^{3} \cdot 7^{4} $
Index $ 2^{4} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7^3:D_{28}$
Order: \(19208\)\(\medspace = 2^{3} \cdot 7^{4} \)
Index: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Generators: $\langle(15,17,19,21,16,18,20)(22,24,26,28,23,25,27), (22,28,27,26,25,24,23), (16,21) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $D_7\wr S_4$
Order: \(921984\)\(\medspace = 2^{7} \cdot 3 \cdot 7^{4} \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$5$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^4.C_2^3.(C_6\times S_4)$, of order \(2765952\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7^{4} \)
$\operatorname{Aut}(H)$ $C_7^4.C_6^3.C_2^2$
$\card{W}$\(76832\)\(\medspace = 2^{5} \cdot 7^{4} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_7^3:(C_2\times D_4)\times D_7$
Normal closure:$C_7:D_7^3:S_4$
Core:$C_7^4$
Minimal over-subgroups:$C_7^4:S_4$$C_7^4.C_2^3.C_2$$C_7^3:D_4\times D_7$$D_7^2:D_7^2$
Maximal under-subgroups:$C_7^4:C_2^2$$C_7\wr C_4$$C_7\wr C_2^2$$C_7^3:D_4$$C_7^2:D_{28}$$C_7:D_{28}$

Other information

Number of subgroups in this autjugacy class$12$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$D_7\wr S_4$