Properties

Label 921984.a.38416.g1
Order $ 2^{3} \cdot 3 $
Index $ 2^{4} \cdot 7^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_4$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Index: \(38416\)\(\medspace = 2^{4} \cdot 7^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(8,17,24)(9,18,25)(10,19,26)(11,20,27)(12,21,28)(13,15,22)(14,16,23), (15,19) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, monomial (hence solvable), and rational.

Ambient group ($G$) information

Description: $D_7\wr S_4$
Order: \(921984\)\(\medspace = 2^{7} \cdot 3 \cdot 7^{4} \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$5$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^4.C_2^3.(C_6\times S_4)$, of order \(2765952\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7^{4} \)
$\operatorname{Aut}(H)$ $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2^2\times S_4$
Normal closure:$C_7^4:Q_8:S_4$
Core:$C_1$
Minimal over-subgroups:$C_7^3:S_4$$C_7:S_4$$C_2\times S_4$$C_2\times S_4$$C_2\times S_4$
Maximal under-subgroups:$A_4$$D_4$$S_3$

Other information

Number of subgroups in this autjugacy class$9604$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$D_7\wr S_4$