Properties

Label 921984.a.2688.e1
Order $ 7^{3} $
Index $ 2^{7} \cdot 3 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7^3$
Order: \(343\)\(\medspace = 7^{3} \)
Index: \(2688\)\(\medspace = 2^{7} \cdot 3 \cdot 7 \)
Exponent: \(7\)
Generators: $\langle(15,17,19,21,16,18,20)(22,24,26,28,23,25,27), (8,10,12,14,9,11,13)(15,17,19,21,16,18,20)(22,24,26,28,23,25,27), (1,2,3,4,5,6,7)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary).

Ambient group ($G$) information

Description: $D_7\wr S_4$
Order: \(921984\)\(\medspace = 2^{7} \cdot 3 \cdot 7^{4} \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$5$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^4.C_2^3.(C_6\times S_4)$, of order \(2765952\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7^{4} \)
$\operatorname{Aut}(H)$ $\GL(3,7)$, of order \(33784128\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 7^{3} \cdot 19 \)
$W$$C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_7^3\times D_7$
Normalizer:$C_7^4.C_2^4.C_2$
Normal closure:$C_7^4$
Core:$C_1$
Minimal over-subgroups:$C_7^4$$D_7\times C_7^2$$C_7^2\times C_{14}$$D_7\times C_7^2$$D_7\times C_7^2$$D_7\times C_7^2$$C_7^2:C_{14}$$D_7\times C_7^2$$C_7^2:C_{14}$$D_7\times C_7^2$$C_7^2:C_{14}$$C_7^2:C_{14}$$C_7^3:C_2$$C_7^2:C_{14}$$C_7^2:C_{14}$$C_7^3:C_2$
Maximal under-subgroups:$C_7^2$$C_7^2$$C_7^2$$C_7^2$$C_7^2$$C_7^2$$C_7^2$$C_7^2$$C_7^2$$C_7^2$$C_7^2$$C_7^2$$C_7^2$

Other information

Number of subgroups in this autjugacy class$12$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$D_7\wr S_4$