Subgroup ($H$) information
| Description: | $C_7^3$ |
| Order: | \(343\)\(\medspace = 7^{3} \) |
| Index: | \(2688\)\(\medspace = 2^{7} \cdot 3 \cdot 7 \) |
| Exponent: | \(7\) |
| Generators: |
$\langle(15,17,19,21,16,18,20)(22,24,26,28,23,25,27), (8,10,12,14,9,11,13)(15,17,19,21,16,18,20)(22,24,26,28,23,25,27), (1,2,3,4,5,6,7)\rangle$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary).
Ambient group ($G$) information
| Description: | $D_7\wr S_4$ |
| Order: | \(921984\)\(\medspace = 2^{7} \cdot 3 \cdot 7^{4} \) |
| Exponent: | \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
| Derived length: | $5$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_7^4.C_2^3.(C_6\times S_4)$, of order \(2765952\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7^{4} \) |
| $\operatorname{Aut}(H)$ | $\GL(3,7)$, of order \(33784128\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 7^{3} \cdot 19 \) |
| $W$ | $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $12$ |
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $0$ |
| Projective image | $D_7\wr S_4$ |