Properties

Label 921984.a.131712.f1
Order $ 7 $
Index $ 2^{7} \cdot 3 \cdot 7^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7$
Order: \(7\)
Index: \(131712\)\(\medspace = 2^{7} \cdot 3 \cdot 7^{3} \)
Exponent: \(7\)
Generators: $\langle(1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,20,18,16,21,19,17)(22,24,26,28,23,25,27)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Ambient group ($G$) information

Description: $D_7\wr S_4$
Order: \(921984\)\(\medspace = 2^{7} \cdot 3 \cdot 7^{4} \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$5$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^4.C_2^3.(C_6\times S_4)$, of order \(2765952\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7^{4} \)
$\operatorname{Aut}(H)$ $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_7\times C_7^3:S_3$
Normalizer:$C_7^4:D_6$
Normal closure:$C_7^4$
Core:$C_1$
Minimal over-subgroups:$C_7^2$$C_7^2$$C_7^2$$C_7^2$$C_7^2$$C_7^2$$C_7^2$$C_7^2$$C_7^2$$C_7^2$$C_7^2$$C_7^2$$C_7^2$$C_7^2$$C_{21}$$C_{14}$$D_7$$D_7$
Maximal under-subgroups:$C_1$

Other information

Number of subgroups in this autjugacy class$32$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$D_7\wr S_4$