Properties

Label 9216.kh.2.C
Order $ 2^{9} \cdot 3^{2} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^6:(C_6\times D_6)$
Order: \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \)
Index: \(2\)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,2), (4,6)(5,7), (1,3,2)(4,6,5)(8,15)(9,10)(11,13)(12,14), (1,2,3)(4,7,5) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, nonabelian, and metabelian (hence solvable). Whether it is a direct factor, a semidirect factor, or monomial has not been computed.

Ambient group ($G$) information

Description: $C_2^6.D_6^2$
Order: \(9216\)\(\medspace = 2^{10} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^4:D_4:C_2$, of order \(221184\)\(\medspace = 2^{13} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $D_5^3:C_4$, of order \(110592\)\(\medspace = 2^{12} \cdot 3^{3} \)
$W$$C_2^5.D_6^2$, of order \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_2^6.D_6^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2^5.D_6^2$