Properties

Label 9216.by.4.L
Order $ 2^{8} \cdot 3^{2} $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_2^2\times A_4^2):C_4$
Order: \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\langle(2,4,3)(5,8,6), (1,2,5,7)(3,8)(4,6)(9,11,10,16)(12,15,14,13), (2,7)(3,4) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $A_4^2:C_2^4:C_4$
Order: \(9216\)\(\medspace = 2^{10} \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$A_4^2.C_2^5.C_2^5$
$\operatorname{Aut}(H)$ $A_4^2:D_4^2$, of order \(9216\)\(\medspace = 2^{10} \cdot 3^{2} \)
$W$$C_2\times A_4^2:C_4$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2^3:(A_4^2:C_4)$
Normal closure:$C_2^3:(A_4^2:C_4)$
Core:$A_4^2:C_2^3$
Minimal over-subgroups:$C_2^3:(A_4^2:C_4)$
Maximal under-subgroups:$A_4^2:C_2^3$$C_2\times A_4^2:C_4$$C_2^6:C_4$$C_6^2:C_4$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$C_2^3:(A_4^2:C_4)$