Properties

Label 9216.by.16.A
Order $ 2^{6} \cdot 3^{2} $
Index $ 2^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times A_4^2$
Order: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(2,4,3)(5,8,6), (2,7)(3,4), (2,7,4)(5,6,8)(9,10)(11,16)(12,14)(13,15), (1,6) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $A_4^2:C_2^4:C_4$
Order: \(9216\)\(\medspace = 2^{10} \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2^2:C_4$
Order: \(16\)\(\medspace = 2^{4} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2^2\wr C_2$, of order \(32\)\(\medspace = 2^{5} \)
Outer Automorphisms: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$A_4^2.C_2^5.C_2^5$
$\operatorname{Aut}(H)$ $S_4^2:D_6$, of order \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
$W$$C_2\times A_4^2:C_4$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$A_4^2:C_2^4:C_4$
Minimal over-subgroups:$A_4^2:C_2^3$$A_4^2:C_2^3$$C_2^3\times A_4^2$$D_4\times A_4^2$$A_4:\GL(2,\mathbb{Z}/4)$
Maximal under-subgroups:$C_2\times A_4^2$$C_2\times A_4^2$$A_4\times C_2^4$$C_2^2\wr C_3$$C_2^2:C_6^2$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$C_2^3:(A_4^2:C_4)$