Properties

Label 9216.by.1152.C
Order $ 2^{3} $
Index $ 2^{7} \cdot 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_4$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(9,10,13,15)(11,14,12,16), (11,12)(14,16), (9,13)(10,15)(11,12)(14,16)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $A_4^2:C_2^4:C_4$
Order: \(9216\)\(\medspace = 2^{10} \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2\times A_4^2:C_4$
Order: \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Automorphism Group: $S_4^2:C_2^2$, of order \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian and monomial (hence solvable).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$A_4^2.C_2^5.C_2^5$
$\operatorname{Aut}(H)$ $D_4$, of order \(8\)\(\medspace = 2^{3} \)
$W$$C_4$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_4\times A_4^2:C_2^2$
Normalizer:$A_4^2:C_2^4:C_4$
Complements:$C_2\times A_4^2:C_4$
Minimal over-subgroups:$C_2\times D_4$
Maximal under-subgroups:$C_2^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2^3:(A_4^2:C_4)$