Properties

Label 9216.bk.32.e1
Order $ 2^{5} \cdot 3^{2} $
Index $ 2^{5} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_2\times C_6^2).C_4$
Order: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Index: \(32\)\(\medspace = 2^{5} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\langle(11,13)(15,16), (9,10)(11,13)(12,14)(15,16), (12,14)(15,16), (3,6,7), (1,4,8) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), and metabelian.

Ambient group ($G$) information

Description: $C_2^7.\SOPlus(4,2)$
Order: \(9216\)\(\medspace = 2^{10} \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$A_4^2.C_2^6.C_2^2$
$\operatorname{Aut}(H)$ $(C_2^3\times C_3:S_3.C_2).C_2^4$
$W$$D_6\wr C_2$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_2^3.\SOPlus(4,2)$
Normal closure:$(C_2^3\times A_4^2).C_4$
Core:$C_2^3$
Minimal over-subgroups:$(C_2^3\times A_4^2).C_4$$C_2^3.\SOPlus(4,2)$
Maximal under-subgroups:$C_6^2:C_2^2$$C_3^2:\OD_{16}$

Other information

Number of subgroups in this autjugacy class$16$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2^6:\SOPlus(4,2)$