Subgroup ($H$) information
| Description: | $C_2^2$ | 
| Order: | \(4\)\(\medspace = 2^{2} \) | 
| Index: | \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \) | 
| Exponent: | \(2\) | 
| Generators: | $\langle(9,13)(10,16)(11,15)(12,14), (11,15)(12,14)\rangle$ | 
| Nilpotency class: | $1$ | 
| Derived length: | $1$ | 
The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.
Ambient group ($G$) information
| Description: | $(C_2^3\times A_4^2):D_4$ | 
| Order: | \(9216\)\(\medspace = 2^{10} \cdot 3^{2} \) | 
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Derived length: | $3$ | 
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Quotient group ($Q$) structure
| Description: | $C_2\times A_4^2:D_4$ | 
| Order: | \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \) | 
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Automorphism Group: | $A_4^2.C_2^4.C_2^3$ | 
| Outer Automorphisms: | $C_2^2\times D_4$, of order \(32\)\(\medspace = 2^{5} \) | 
| Nilpotency class: | $-1$ | 
| Derived length: | $3$ | 
The quotient is nonabelian and monomial (hence solvable).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $D_5^3.C_2^2$, of order \(73728\)\(\medspace = 2^{13} \cdot 3^{2} \) | 
| $\operatorname{Aut}(H)$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) | 
| $W$ | $C_2$, of order \(2\) | 
Related subgroups
| Centralizer: | $C_2^6.C_6^2.C_2$ | ||
| Normalizer: | $(C_2^3\times A_4^2):D_4$ | ||
| Minimal over-subgroups: | $C_2^3$ | $C_2^3$ | $C_2\times C_4$ | 
| Maximal under-subgroups: | $C_2$ | 
Other information
| Number of conjugacy classes in this autjugacy class | $1$ | 
| Möbius function | not computed | 
| Projective image | not computed | 
