Properties

Label 90720.g.90.a1.a1
Order $ 2^{4} \cdot 3^{2} \cdot 7 $
Index $ 2 \cdot 3^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times \SL(2,8)$
Order: \(1008\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7 \)
Index: \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
Exponent: \(126\)\(\medspace = 2 \cdot 3^{2} \cdot 7 \)
Generators: $\langle(10,12)(13,14), (1,7,2)(3,4,6)(5,9,8)(10,12)(13,14), (1,8,6)(2,4,7)(3,5,9)\rangle$ Copy content Toggle raw display
Derived length: $1$

The subgroup is nonabelian, an A-group, and nonsolvable.

Ambient group ($G$) information

Description: $A_5\times {}^2G(2,3)$
Order: \(90720\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5 \cdot 7 \)
Exponent: \(630\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_5\times {}^2G(2,3)$, of order \(181440\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5 \cdot 7 \)
$\operatorname{Aut}(H)$ ${}^2G(2,3)$, of order \(1512\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 7 \)
$W$${}^2G(2,3)$, of order \(1512\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 7 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2^2\times {}^2G(2,3)$
Normal closure:$A_5\times \SL(2,8)$
Core:$\SL(2,8)$
Minimal over-subgroups:$D_5\times \SL(2,8)$$\SL(2,8):C_6$$S_3\times \SL(2,8)$$C_2^2\times \SL(2,8)$
Maximal under-subgroups:$\SL(2,8)$$C_2\times F_8$$D_{18}$$D_{14}$

Other information

Number of subgroups in this conjugacy class$15$
Möbius function$-4$
Projective image$A_5\times {}^2G(2,3)$