Subgroup ($H$) information
| Description: | $F_8:C_{15}$ |
| Order: | \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \) |
| Index: | \(108\)\(\medspace = 2^{2} \cdot 3^{3} \) |
| Exponent: | \(210\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 7 \) |
| Generators: |
$\langle(10,12,13,14,11), (1,5)(2,6)(3,4)(8,9), (1,9)(2,4)(3,6)(5,8), (1,6)(2,5)(3,9)(4,8), (1,2,5,3,6,9,8), (1,6,9)(2,8,5)\rangle$
|
| Derived length: | $3$ |
The subgroup is nonabelian, monomial (hence solvable), and an A-group.
Ambient group ($G$) information
| Description: | $A_5\times {}^2G(2,3)$ |
| Order: | \(90720\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5 \cdot 7 \) |
| Exponent: | \(630\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \cdot 7 \) |
| Derived length: | $1$ |
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $S_5\times {}^2G(2,3)$, of order \(181440\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5 \cdot 7 \) |
| $\operatorname{Aut}(H)$ | $F_8:C_{12}$, of order \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \) |
| $W$ | $F_8:C_6$, of order \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \) |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $54$ |
| Möbius function | $0$ |
| Projective image | $A_5\times {}^2G(2,3)$ |