Properties

Label 90720.g.108.b1.a1
Order $ 2^{3} \cdot 3 \cdot 5 \cdot 7 $
Index $ 2^{2} \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$F_8:C_{15}$
Order: \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Index: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Exponent: \(210\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 7 \)
Generators: $\langle(10,12,13,14,11), (1,5)(2,6)(3,4)(8,9), (1,9)(2,4)(3,6)(5,8), (1,6)(2,5)(3,9)(4,8), (1,2,5,3,6,9,8), (1,6,9)(2,8,5)\rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, monomial (hence solvable), and an A-group.

Ambient group ($G$) information

Description: $A_5\times {}^2G(2,3)$
Order: \(90720\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5 \cdot 7 \)
Exponent: \(630\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_5\times {}^2G(2,3)$, of order \(181440\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5 \cdot 7 \)
$\operatorname{Aut}(H)$ $F_8:C_{12}$, of order \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
$W$$F_8:C_6$, of order \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)

Related subgroups

Centralizer:$C_5$
Normalizer:$D_5\times F_8:C_3$
Normal closure:$A_5\times {}^2G(2,3)$
Core:$C_1$
Minimal over-subgroups:$\SL(2,8):C_{15}$$D_5\times F_8:C_3$
Maximal under-subgroups:$C_5\times F_8$$F_8:C_3$$C_{10}\times A_4$$C_7:C_{15}$

Other information

Number of subgroups in this conjugacy class$54$
Möbius function$0$
Projective image$A_5\times {}^2G(2,3)$