Properties

Label 9000.w.18.a1.a1
Order $ 2^{2} \cdot 5^{3} $
Index $ 2 \cdot 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5:D_5^2$
Order: \(500\)\(\medspace = 2^{2} \cdot 5^{3} \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $\langle(2,7,9,10,11)(3,8,12,15,4), (1,14,6,5,13)(3,8,12,15,4), (3,15)(7,11)(8,12)(9,10), (3,15,8,4,12), (5,6)(7,11)(9,10)(13,14)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $(C_5^2\times C_{15}):S_4$
Order: \(9000\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_3:S_3$
Order: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $C_3^2:\GL(2,3)$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Outer Automorphisms: $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$D_5^3:\He_3.C_2^3$, of order \(216000\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $F_5\wr S_3$, of order \(48000\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{3} \)
$W$$C_5^3:S_4$, of order \(3000\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{3} \)

Related subgroups

Centralizer:$C_3$
Normalizer:$(C_5^2\times C_{15}):S_4$
Complements:$C_3:S_3$
Minimal over-subgroups:$C_{15}:D_5^2$$C_5^3:A_4$$C_5^3:A_4$$C_5^3:A_4$$C_5^3:D_4$
Maximal under-subgroups:$C_5^2:C_{10}$$D_5^2$

Other information

Möbius function$-27$
Projective image$(C_5^2\times C_{15}):S_4$