Properties

Label 9000.w.12.b1.a1
Order $ 2 \cdot 3 \cdot 5^{3} $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5^2\times D_{15}$
Order: \(750\)\(\medspace = 2 \cdot 3 \cdot 5^{3} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $\langle(2,7,9,10,11)(3,8,12,15,4), (2,4,9,3,11,8,7,12,10,15)(17,18), (16,18,17), (1,14,6,5,13)(3,8,12,15,4), (3,15,8,4,12)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $(C_5^2\times C_{15}):S_4$
Order: \(9000\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_5^3:\He_3.C_2^3$, of order \(216000\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $S_3\times \GL(2,5)\times F_5$
$W$$S_3\times D_5$, of order \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_5^2$
Normalizer:$C_{15}:D_5^2$
Normal closure:$(C_5^2\times C_{15}):S_4$
Core:$C_5^2\times C_{15}$
Minimal over-subgroups:$(C_5^2\times C_{15}):S_3$$C_{15}:D_5^2$
Maximal under-subgroups:$C_5^2\times C_{15}$$D_5\times C_5^2$$S_3\times C_5^2$$C_5\times D_{15}$$C_5\times D_{15}$$C_5\times D_{15}$$C_5\times D_{15}$

Other information

Number of subgroups in this conjugacy class$6$
Möbius function$2$
Projective image$(C_5^2\times C_{15}):S_4$