Properties

Label 9000.o.600.d1.a1
Order $ 3 \cdot 5 $
Index $ 2^{3} \cdot 3 \cdot 5^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}$
Order: \(15\)\(\medspace = 3 \cdot 5 \)
Index: \(600\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \)
Exponent: \(15\)\(\medspace = 3 \cdot 5 \)
Generators: $a^{4}, de^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 3,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_5^3:(S_3\times C_{12})$
Order: \(9000\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_5^3.(C_4^2\times S_3)$
$\operatorname{Aut}(H)$ $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
$W$$C_4$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_5^2:C_{30}$
Normalizer:$C_3\times C_5^3:(C_2\times C_4)$
Normal closure:$C_5\times C_{15}$
Core:$C_3$
Minimal over-subgroups:$C_5\times C_{15}$$C_5\times C_{15}$$C_5\times C_{15}$$C_5\times C_{15}$$C_5\times C_{15}$$C_5\times C_{15}$$C_3\times D_5$$C_{30}$$C_3\times D_5$
Maximal under-subgroups:$C_5$$C_3$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$0$
Projective image$C_5^3:(C_4\times S_3)$