Properties

Label 9000.o.20.a1.a1
Order $ 2 \cdot 3^{2} \cdot 5^{2} $
Index $ 2^{2} \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times C_5^2:S_3$
Order: \(450\)\(\medspace = 2 \cdot 3^{2} \cdot 5^{2} \)
Index: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $b^{5}, cd^{3}, de^{3}, a^{4}, e$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, monomial (hence solvable), and an A-group.

Ambient group ($G$) information

Description: $C_5^3:(S_3\times C_{12})$
Order: \(9000\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and an A-group.

Quotient group ($Q$) structure

Description: $F_5$
Order: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Automorphism Group: $F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
Outer Automorphisms: $C_1$, of order $1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_5^3.(C_4^2\times S_3)$
$\operatorname{Aut}(H)$ $C_5^2:(C_4\times D_6)$, of order \(1200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \)
$W$$C_5^2:(C_4\times S_3)$, of order \(600\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \)

Related subgroups

Centralizer:$C_{15}$
Normalizer:$C_5^3:(S_3\times C_{12})$
Complements:$F_5$ $F_5$ $F_5$ $F_5$ $F_5$ $F_5$ $F_5$ $F_5$ $F_5$ $F_5$ $F_5$ $F_5$
Minimal over-subgroups:$C_3\times C_5\wr S_3$$C_3\times C_5^2:D_6$
Maximal under-subgroups:$C_5^2:C_3^2$$C_5^2:S_3$$D_5\times C_{15}$$C_3\times S_3$

Other information

Möbius function$0$
Projective image$C_5^3:(C_4\times S_3)$