Properties

Label 9000.o.12.b1.a1
Order $ 2 \cdot 3 \cdot 5^{3} $
Index $ 2^{2} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5^2:D_{15}$
Order: \(750\)\(\medspace = 2 \cdot 3 \cdot 5^{3} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $a^{6}b^{9}, b^{2}, de^{2}, cd^{3}, e$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, monomial (hence solvable), and an A-group.

Ambient group ($G$) information

Description: $C_5^3:(S_3\times C_{12})$
Order: \(9000\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and an A-group.

Quotient group ($Q$) structure

Description: $C_{12}$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_5^3.(C_4^2\times S_3)$
$\operatorname{Aut}(H)$ $C_5^3:(S_3\times C_4^2)$, of order \(12000\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{3} \)
$W$$C_5^3:(C_4\times S_3)$, of order \(3000\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{3} \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_5^3:(S_3\times C_{12})$
Complements:$C_{12}$ $C_{12}$ $C_{12}$
Minimal over-subgroups:$C_3\times C_5^2:D_{15}$$C_5^3:D_6$
Maximal under-subgroups:$C_5\wr C_3$$C_5^2:C_{10}$$C_5^2:S_3$$D_{15}$

Other information

Möbius function$0$
Projective image$C_5^3:(S_3\times C_{12})$