Properties

Label 900.87.2.a1
Order $ 2 \cdot 3^{2} \cdot 5^{2} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}\times C_{30}$
Order: \(450\)\(\medspace = 2 \cdot 3^{2} \cdot 5^{2} \)
Index: \(2\)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $b^{30}, b^{40}, a^{3}, a^{10}, b^{12}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the socle (hence characteristic and normal), maximal, central (hence abelian, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and metacyclic.

Ambient group ($G$) information

Description: $C_{15}\times C_{60}$
Order: \(900\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Nilpotency class:$1$
Derived length:$1$

The ambient group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and metacyclic.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times \GL(2,3)\times \GL(2,5)$
$\operatorname{Aut}(H)$ $\GL(2,3)\times \GL(2,5)$, of order \(23040\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 5 \)
$\operatorname{res}(\operatorname{Aut}(G))$$\GL(2,3)\times \GL(2,5)$, of order \(23040\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{15}\times C_{60}$
Normalizer:$C_{15}\times C_{60}$
Minimal over-subgroups:$C_{15}\times C_{60}$
Maximal under-subgroups:$C_{15}^2$$C_5\times C_{30}$$C_3\times C_{30}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$C_2$