Properties

Label 900.81.20.a1.e1
Order $ 3^{2} \cdot 5 $
Index $ 2^{2} \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times C_{15}$
Order: \(45\)\(\medspace = 3^{2} \cdot 5 \)
Index: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Exponent: \(15\)\(\medspace = 3 \cdot 5 \)
Generators: $a^{40}, b^{3}, b^{10}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 3$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_{15}:C_{60}$
Order: \(900\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_{20}$
Order: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Automorphism Group: $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
Outer Automorphisms: $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times \GL(2,5)\times S_3$
$\operatorname{Aut}(H)$ $C_4\times \GL(2,3)$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\operatorname{res}(S)$$C_2^2\times C_4$, of order \(16\)\(\medspace = 2^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{15}\times C_{30}$
Normalizer:$C_{15}:C_{60}$
Complements:$C_{20}$ $C_{20}$ $C_{20}$ $C_{20}$ $C_{20}$
Minimal over-subgroups:$C_{15}^2$$C_3\times C_{30}$
Maximal under-subgroups:$C_{15}$$C_{15}$$C_{15}$$C_3^2$
Autjugate subgroups:900.81.20.a1.a1900.81.20.a1.b1900.81.20.a1.c1900.81.20.a1.d1900.81.20.a1.f1

Other information

Möbius function$0$
Projective image$C_3:C_{20}$