Properties

Label 900.81.12.c1.a1
Order $ 3 \cdot 5^{2} $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times C_{15}$
Order: \(75\)\(\medspace = 3 \cdot 5^{2} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(15\)\(\medspace = 3 \cdot 5 \)
Generators: $a^{40}b^{10}, b^{3}, a^{12}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 5$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_{15}:C_{60}$
Order: \(900\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times \GL(2,5)\times S_3$
$\operatorname{Aut}(H)$ $C_2\times \GL(2,5)$, of order \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
$\operatorname{res}(S)$$C_2\times \GL(2,5)$, of order \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{15}\times C_{30}$
Normalizer:$C_{15}\times C_{30}$
Normal closure:$C_{15}^2$
Core:$C_5^2$
Minimal over-subgroups:$C_{15}^2$$C_5\times C_{30}$
Maximal under-subgroups:$C_5^2$$C_{15}$$C_{15}$$C_{15}$$C_{15}$$C_{15}$$C_{15}$

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$C_3:C_{12}$