Properties

Label 900.144.300.a1
Order $ 3 $
Index $ 2^{2} \cdot 3 \cdot 5^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3$
Order: \(3\)
Index: \(300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \)
Exponent: \(3\)
Generators: $a^{20}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_{30}:C_{30}$
Order: \(900\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $D_6\times C_5^2$
Order: \(300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Automorphism Group: $D_6\times \GL(2,5)$, of order \(5760\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \)
Outer Automorphisms: $C_2\times \GL(2,5)$, of order \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times \GL(2,5)\times S_3$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(5760\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{30}:C_{30}$
Normalizer:$C_{30}:C_{30}$
Complements:$D_6\times C_5^2$
Minimal over-subgroups:$C_{15}$$C_3^2$$C_6$$C_6$
Maximal under-subgroups:$C_1$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-30$
Projective image$D_6\times C_5^2$