Subgroup ($H$) information
| Description: | $A_6^3.D_6$ |
| Order: | \(559872000\)\(\medspace = 2^{11} \cdot 3^{7} \cdot 5^{3} \) |
| Index: | \(16\)\(\medspace = 2^{4} \) |
| Exponent: | \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \) |
| Generators: |
$\langle(12,14,20,17)(13,16,18,15)(22,26,23)(24,27,29)(25,30,28), (1,8,7)(3,5,10) \!\cdots\! \rangle$
|
| Derived length: | $2$ |
The subgroup is nonabelian and nonsolvable.
Ambient group ($G$) information
| Description: | $A_6^3.C_2^4.D_6$ |
| Order: | \(8957952000\)\(\medspace = 2^{15} \cdot 3^{7} \cdot 5^{3} \) |
| Exponent: | \(720\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | Group of order \(17915904000\)\(\medspace = 2^{16} \cdot 3^{7} \cdot 5^{3} \) |
| $\operatorname{Aut}(H)$ | $A_6\wr C_3.C_2^3$, of order \(1119744000\)\(\medspace = 2^{12} \cdot 3^{7} \cdot 5^{3} \) |
| $\card{W}$ | not computed |
Related subgroups
| Centralizer: | not computed |
| Normalizer: | not computed |
| Normal closure: | not computed |
| Core: | not computed |
| Autjugate subgroups: | Subgroups are not computed up to automorphism. |
Other information
| Number of subgroups in this conjugacy class | $16$ |
| Möbius function | not computed |
| Projective image | not computed |