Properties

Label 889344.f.1536.A
Order $ 3 \cdot 193 $
Index $ 2^{9} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{579}$
Order: \(579\)\(\medspace = 3 \cdot 193 \)
Index: \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Exponent: \(579\)\(\medspace = 3 \cdot 193 \)
Generators: $b^{6176}, b^{96}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 3,193$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{18528}.C_{48}$
Order: \(889344\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 193 \)
Exponent: \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_8\times C_{192}$
Order: \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Exponent: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Automorphism Group: $C_2.C_4^3.C_2^6.C_2$
Outer Automorphisms: $C_2.C_4^3.C_2^6.C_2$
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{4632}.C_{24}.C_4^2.C_2^5$
$\operatorname{Aut}(H)$ $C_2\times C_{192}$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$W$$C_{48}$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_{18528}$
Normalizer:$C_{18528}.C_{48}$
Complements:$C_8\times C_{192}$
Minimal over-subgroups:$C_{579}:C_3$$C_{1158}$$C_3\times D_{193}$
Maximal under-subgroups:$C_{193}$$C_3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_{6176}.C_{48}$