Properties

Label 889344.a.296448.A
Order $ 3 $
Index $ 2^{9} \cdot 3 \cdot 193 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3$
Order: \(3\)
Index: \(296448\)\(\medspace = 2^{9} \cdot 3 \cdot 193 \)
Exponent: \(3\)
Generators: $b^{1544}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_{24}\times F_{193}$
Order: \(889344\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 193 \)
Exponent: \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_8\times F_{193}$
Order: \(296448\)\(\medspace = 2^{9} \cdot 3 \cdot 193 \)
Exponent: \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
Automorphism Group: $C_{772}.C_{96}.C_2^4$
Outer Automorphisms: $D_8:C_2$, of order \(32\)\(\medspace = 2^{5} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{2316}.C_{96}.C_2^5$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{24}\times F_{193}$
Normalizer:$C_{24}\times F_{193}$
Complements:$C_8\times F_{193}$
Minimal over-subgroups:$C_{579}$$C_3^2$$C_6$$C_6$$C_6$
Maximal under-subgroups:$C_1$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_8\times F_{193}$