Subgroup ($H$) information
| Description: | $C_5\times Q_8$ |
| Order: | \(40\)\(\medspace = 2^{3} \cdot 5 \) |
| Index: | \(22\)\(\medspace = 2 \cdot 11 \) |
| Exponent: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| Generators: |
$a^{5}, a^{2}b^{44}, b^{44}, b^{22}$
|
| Nilpotency class: | $2$ |
| Derived length: | $2$ |
The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).
Ambient group ($G$) information
| Description: | $C_{88}.C_{10}$ |
| Order: | \(880\)\(\medspace = 2^{4} \cdot 5 \cdot 11 \) |
| Exponent: | \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \) |
| Derived length: | $2$ |
The ambient group is nonabelian and metacyclic (hence solvable, supersolvable, monomial, and metabelian).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $D_8:C_2\times F_{11}$, of order \(3520\)\(\medspace = 2^{6} \cdot 5 \cdot 11 \) |
| $\operatorname{Aut}(H)$ | $C_4\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) |
| $\operatorname{res}(S)$ | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| $W$ | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $11$ |
| Möbius function | $1$ |
| Projective image | $C_{44}:C_{10}$ |