Properties

Label 88.12.44.a1.a1
Order $ 2 $
Index $ 2^{2} \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2$
Order: \(2\)
Index: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Exponent: \(2\)
Generators: $c^{11}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $p$-group, simple, and rational.

Ambient group ($G$) information

Description: $C_2^2\times C_{22}$
Order: \(88\)\(\medspace = 2^{3} \cdot 11 \)
Exponent: \(22\)\(\medspace = 2 \cdot 11 \)
Nilpotency class:$1$
Derived length:$1$

The ambient group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).

Quotient group ($Q$) structure

Description: $C_2\times C_{22}$
Order: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Exponent: \(22\)\(\medspace = 2 \cdot 11 \)
Automorphism Group: $S_3\times C_{10}$, of order \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Outer Automorphisms: $S_3\times C_{10}$, of order \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{10}\times \GL(3,2)$, of order \(1680\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$\operatorname{res}(S)$$C_1$, of order $1$
$\card{\operatorname{ker}(\operatorname{res})}$\(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2^2\times C_{22}$
Normalizer:$C_2^2\times C_{22}$
Complements:$C_2\times C_{22}$ $C_2\times C_{22}$ $C_2\times C_{22}$ $C_2\times C_{22}$
Minimal over-subgroups:$C_{22}$$C_2^2$$C_2^2$$C_2^2$
Maximal under-subgroups:$C_1$
Autjugate subgroups:88.12.44.a1.b188.12.44.a1.c188.12.44.a1.d188.12.44.a1.e188.12.44.a1.f188.12.44.a1.g1

Other information

Möbius function$-2$
Projective image$C_2\times C_{22}$