Properties

Label 88.1.22.a1.a1
Order $ 2^{2} $
Index $ 2 \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(22\)\(\medspace = 2 \cdot 11 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $a^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), the Frattini subgroup, cyclic (hence elementary, hyperelementary, metacyclic, and a Z-group), and a $p$-group.

Ambient group ($G$) information

Description: $C_{11}:C_8$
Order: \(88\)\(\medspace = 2^{3} \cdot 11 \)
Exponent: \(88\)\(\medspace = 2^{3} \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Quotient group ($Q$) structure

Description: $D_{11}$
Order: \(22\)\(\medspace = 2 \cdot 11 \)
Exponent: \(22\)\(\medspace = 2 \cdot 11 \)
Automorphism Group: $F_{11}$, of order \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Outer Automorphisms: $C_5$, of order \(5\)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times F_{11}$, of order \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{11}:C_8$
Normalizer:$C_{11}:C_8$
Minimal over-subgroups:$C_{44}$$C_8$
Maximal under-subgroups:$C_2$

Other information

Möbius function$11$
Projective image$D_{11}$