Subgroup ($H$) information
| Description: | $C_3^2$ | 
| Order: | \(9\)\(\medspace = 3^{2} \) | 
| Index: | \(972\)\(\medspace = 2^{2} \cdot 3^{5} \) | 
| Exponent: | \(3\) | 
| Generators: | $b^{6}f, ef^{2}$ | 
| Nilpotency class: | $1$ | 
| Derived length: | $1$ | 
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.
Ambient group ($G$) information
| Description: | $C_3^5.S_3^2$ | 
| Order: | \(8748\)\(\medspace = 2^{2} \cdot 3^{7} \) | 
| Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) | 
| Derived length: | $3$ | 
The ambient group is nonabelian and supersolvable (hence solvable and monomial).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^4.C_3^4.C_2^2$ | 
| $\operatorname{Aut}(H)$ | $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) | 
| $W$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) | 
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $9$ | 
| Möbius function | $0$ | 
| Projective image | $C_3^5.S_3^2$ | 
