Properties

Label 8748.fn.18.b1.a1
Order $ 2 \cdot 3^{5} $
Index $ 2 \cdot 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^4:C_6$
Order: \(486\)\(\medspace = 2 \cdot 3^{5} \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $b^{9}, f, ef^{2}, b^{6}f, ce^{2}f, def$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_3^5.S_3^2$
Order: \(8748\)\(\medspace = 2^{2} \cdot 3^{7} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $C_3\times S_3$
Order: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4.C_3^4.C_2^2$
$\operatorname{Aut}(H)$ $C_3^6.C_3:S_3.(C_6\times S_4).C_2$
$W$$C_3^5.S_3^2$, of order \(8748\)\(\medspace = 2^{2} \cdot 3^{7} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_3^5.S_3^2$
Minimal over-subgroups:$C_3^5:S_3$$C_3^4:C_{18}$$C_3^4:C_{18}$$C_3^3:S_3^2$
Maximal under-subgroups:$C_3^2\times \He_3$$C_3^3:S_3$$C_3^3:C_6$$C_3^3:C_6$$C_3^3:C_6$

Other information

Möbius function$-3$
Projective image$C_3^5.S_3^2$