Properties

Label 866844.c.66._.N
Order $ 2 \cdot 3 \cdot 11 \cdot 199 $
Index $ 2 \cdot 3 \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{199}:C_{66}$
Order: \(13134\)\(\medspace = 2 \cdot 3 \cdot 11 \cdot 199 \)
Index: \(66\)\(\medspace = 2 \cdot 3 \cdot 11 \)
Exponent: \(13134\)\(\medspace = 2 \cdot 3 \cdot 11 \cdot 199 \)
Generators: $a^{99}b^{11}, a^{132}, b^{22}, a^{18}b^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, nonabelian, and a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group). Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_{1791}:C_{22}^2$
Order: \(866844\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 11^{2} \cdot 199 \)
Exponent: \(39402\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \cdot 199 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_{66}$
Order: \(66\)\(\medspace = 2 \cdot 3 \cdot 11 \)
Exponent: \(66\)\(\medspace = 2 \cdot 3 \cdot 11 \)
Automorphism Group: $C_2\times C_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
Outer Automorphisms: $C_2\times C_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3,11$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{2189}.C_{495}.C_6.C_2^3$
$\operatorname{Aut}(H)$ $C_2\times F_{199}$, of order \(78804\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 11 \cdot 199 \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed