Properties

Label 8640.ck.960.a1
Order $ 3^{2} $
Index $ 2^{6} \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2$
Order: \(9\)\(\medspace = 3^{2} \)
Index: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Exponent: \(3\)
Generators: $\langle(2,6,5)(3,7,4), (10,11,12)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $A_4\times D_6\times A_5$
Order: \(8640\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, an A-group, and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_6\times S_4\times S_5$, of order \(34560\)\(\medspace = 2^{8} \cdot 3^{3} \cdot 5 \)
$\operatorname{Aut}(H)$ $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_6\times \GL(2,4)$
Normalizer:$D_6\times \GL(2,4)$
Normal closure:$C_3\times A_4$
Core:$C_3$
Minimal over-subgroups:$C_3\times C_{15}$$C_3\times A_4$$C_3^3$$C_3\times C_6$$C_3\times S_3$$C_3\times C_6$$C_3\times C_6$$C_3\times S_3$
Maximal under-subgroups:$C_3$$C_3$$C_3$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$120$
Projective image$A_4\times D_6\times A_5$