Properties

Label 8640.ck.576.a1
Order $ 3 \cdot 5 $
Index $ 2^{6} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}$
Order: \(15\)\(\medspace = 3 \cdot 5 \)
Index: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Exponent: \(15\)\(\medspace = 3 \cdot 5 \)
Generators: $\langle(1,9,13,8,14)(10,12,11), (10,11,12)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 3,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $A_4\times D_6\times A_5$
Order: \(8640\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, an A-group, and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_6\times S_4\times S_5$, of order \(34560\)\(\medspace = 2^{8} \cdot 3^{3} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$A_4\times C_{30}$
Normalizer:$S_3\times A_4\times D_{10}$
Normal closure:$\GL(2,4)$
Core:$C_3$
Minimal over-subgroups:$C_3\times C_{15}$$C_{30}$$C_5\times S_3$$C_{30}$$C_{30}$$C_5\times S_3$$C_3\times D_5$$C_3\times D_5$$C_3\times D_5$$C_3\times D_5$$D_{15}$$D_{15}$
Maximal under-subgroups:$C_5$$C_3$

Other information

Number of subgroups in this autjugacy class$6$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$A_4\times D_6\times A_5$