Properties

Label 8640.ck.120.a1
Order $ 2^{3} \cdot 3^{2} $
Index $ 2^{3} \cdot 3 \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6\times A_4$
Order: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Index: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(2,4)(5,7), (2,6,5)(3,7,4), (10,11,12), (5,7), (3,6)(5,7)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $A_4\times D_6\times A_5$
Order: \(8640\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, an A-group, and nonsolvable.

Quotient group ($Q$) structure

Description: $C_2\times A_5$
Order: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Automorphism Group: $S_5$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is nonabelian, an A-group, and nonsolvable.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$D_6\times S_4\times S_5$, of order \(34560\)\(\medspace = 2^{8} \cdot 3^{3} \cdot 5 \)
$\operatorname{Aut}(H)$ $S_3\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
$W$$C_2\times A_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_6\times A_5$
Normalizer:$A_4\times D_6\times A_5$
Complements:$C_2\times A_5$ $C_2\times A_5$
Minimal over-subgroups:$A_4\times C_{30}$$C_6^2:C_6$$A_4\times D_6$$C_2^2:C_6^2$$A_4\times D_6$
Maximal under-subgroups:$C_3\times A_4$$C_2^2\times C_6$$C_2\times A_4$$C_2\times A_4$$C_3\times C_6$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$60$
Projective image$S_3\times A_4\times A_5$