Properties

Label 8640.bm.12.g1
Order $ 2^{4} \cdot 3^{2} \cdot 5 $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{10}.S_3^2$
Order: \(720\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(12,13), (11,13,12), (1,5,4,3)(6,7)(11,12), (6,7,8), (9,10), (1,4)(3,5)(6,8,7)(9,10), (1,5,2,3,4)(6,8,7)(12,13)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $A_5:D_6^2$
Order: \(8640\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, nonsolvable, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_6\wr C_2.C_2.S_5$
$\operatorname{Aut}(H)$ $F_5\times D_6^2$, of order \(2880\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \)
$W$$F_5\times S_3^2$, of order \(720\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_5.D_6^2$
Normal closure:$S_3\times C_6:S_5$
Core:$C_6\times S_3$
Minimal over-subgroups:$S_3\times C_6:S_5$$D_5.D_6^2$
Maximal under-subgroups:$C_{30}:D_6$$C_{30}:C_{12}$$C_2\times C_3^2:F_5$$D_5.S_3^2$$D_{10}.D_6$$D_6\times F_5$$D_6.D_6$

Other information

Number of subgroups in this autjugacy class$12$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$1$
Projective image$S_3^2\times S_5$