Subgroup ($H$) information
| Description: | $C_6:S_3\times S_4$ |
| Order: | \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) |
| Index: | \(10\)\(\medspace = 2 \cdot 5 \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Generators: |
$\langle(6,7,8), (9,10), (3,4,5)(6,8)(9,10)(12,13), (1,3)(4,5)(6,7)(9,10)(12,13), (6,8)(12,13), (1,5)(3,4)(6,8)(9,10)(12,13), (11,13,12), (4,5)(7,8)(11,13)\rangle$
|
| Derived length: | $3$ |
The subgroup is nonabelian, monomial (hence solvable), and rational.
Ambient group ($G$) information
| Description: | $A_5:D_6^2$ |
| Order: | \(8640\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5 \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, nonsolvable, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $D_6\wr C_2.C_2.S_5$ |
| $\operatorname{Aut}(H)$ | $S_4\times \AGL(2,3).C_2^2$ |
| $W$ | $S_4\times S_3^2$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $5$ |
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $1$ |
| Projective image | $S_3^2\times S_5$ |