Properties

Label 8640.bm.10.e1
Order $ 2^{5} \cdot 3^{3} $
Index $ 2 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6:S_3\times S_4$
Order: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Index: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(6,7,8), (9,10), (3,4,5)(6,8)(9,10)(12,13), (1,3)(4,5)(6,7)(9,10)(12,13), (6,8)(12,13), (1,5)(3,4)(6,8)(9,10)(12,13), (11,13,12), (4,5)(7,8)(11,13)\rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, monomial (hence solvable), and rational.

Ambient group ($G$) information

Description: $A_5:D_6^2$
Order: \(8640\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, nonsolvable, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_6\wr C_2.C_2.S_5$
$\operatorname{Aut}(H)$ $S_4\times \AGL(2,3).C_2^2$
$W$$S_4\times S_3^2$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$A_4:D_6^2$
Normal closure:$C_6:S_3\times S_5$
Core:$C_6:S_3$
Minimal over-subgroups:$C_6:S_3\times S_5$$A_4:D_6^2$
Maximal under-subgroups:$C_6:S_3\times A_4$$A_4:C_6^2$$C_6^2:D_6$$C_6^2:D_6$$D_6\times S_4$$D_6\times S_4$$C_6^2:C_2^3$$C_6:S_3^2$

Other information

Number of subgroups in this autjugacy class$5$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$S_3^2\times S_5$