Properties

Label 864.689.6.b1.a1
Order $ 2^{4} \cdot 3^{2} $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{12}\times A_4$
Order: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a^{6}, d, c^{3}, b, c^{2}, a^{12}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $(C_3\times A_4):C_{24}$
Order: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times C_6^2:D_6$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $D_6\times S_4$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
$\operatorname{res}(\operatorname{Aut}(G))$$D_6\times S_4$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$C_3\times S_4$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_{12}$
Normalizer:$(C_3\times A_4):C_{24}$
Minimal over-subgroups:$C_6^2:C_{12}$$C_{12}.S_4$
Maximal under-subgroups:$C_6\times A_4$$C_2^2\times C_{12}$$C_4\times A_4$$C_3\times C_{12}$

Other information

Möbius function$1$
Projective image$C_3^2:S_4$