Subgroup ($H$) information
Description: | $C_3^2:C_8$ |
Order: | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
Index: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Generators: |
$a^{3}, c^{2}, a^{6}, a^{12}, b$
|
Derived length: | $2$ |
The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Ambient group ($G$) information
Description: | $(C_3\times A_4):C_{24}$ |
Order: | \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2^2\times C_6^2:D_6$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) |
$\operatorname{Aut}(H)$ | $C_6^2:\GL(2,3)$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) |
$\operatorname{res}(S)$ | $C_6^2:D_6$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | $1$ |
$W$ | $C_3^2:C_6$, of order \(54\)\(\medspace = 2 \cdot 3^{3} \) |
Related subgroups
Centralizer: | $C_4$ | ||
Normalizer: | $C_3^2:C_{24}$ | ||
Normal closure: | $C_{12}.S_4$ | ||
Core: | $C_{12}$ | ||
Minimal over-subgroups: | $C_{12}.S_4$ | $C_3^2:C_{24}$ | |
Maximal under-subgroups: | $C_3\times C_{12}$ | $C_3:C_8$ | $C_3:C_8$ |
Other information
Number of subgroups in this conjugacy class | $4$ |
Möbius function | $1$ |
Projective image | $C_3^2:S_4$ |