Properties

Label 864.4704.4.f1
Order $ 2^{3} \cdot 3^{3} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2:S_3$
Order: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\left(\begin{array}{rr} 29 & 27 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 16 & 15 \\ 15 & 1 \end{array}\right), \left(\begin{array}{rr} 1 & 20 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 29 & 0 \\ 0 & 29 \end{array}\right), \left(\begin{array}{rr} 11 & 0 \\ 0 & 11 \end{array}\right), \left(\begin{array}{rr} 1 & 18 \\ 24 & 13 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.

Ambient group ($G$) information

Description: $S_3\times D_6^2$
Order: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^3:C_2^2.S_4^2$, of order \(497664\)\(\medspace = 2^{11} \cdot 3^{5} \)
$\operatorname{Aut}(H)$ $C_3^3.(S_4\times \GL(3,3))$, of order \(7278336\)\(\medspace = 2^{8} \cdot 3^{7} \cdot 13 \)
$\operatorname{res}(\operatorname{Aut}(G))$$S_3\wr S_3\times S_4$, of order \(31104\)\(\medspace = 2^{7} \cdot 3^{5} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$S_3^3$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$S_3\times D_6^2$
Complements:$C_2^2$ $C_2^2$
Minimal over-subgroups:$C_3:D_6^2$
Maximal under-subgroups:$C_3^2:D_6$$C_3\times C_6^2$$C_6:D_6$$C_6:D_6$$C_6:D_6$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$2$
Projective image$S_3^3$