Subgroup ($H$) information
| Description: | $C_2\times S_4$ | 
| Order: | \(48\)\(\medspace = 2^{4} \cdot 3 \) | 
| Index: | \(18\)\(\medspace = 2 \cdot 3^{2} \) | 
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Generators: | $\langle(4,5)(8,9), (3,6)(4,5), (7,10)(8,9), (8,10,9), (7,9)(8,10)\rangle$ | 
| Derived length: | $3$ | 
The subgroup is nonabelian, monomial (hence solvable), and rational.
Ambient group ($G$) information
| Description: | $C_6^2:D_{12}$ | 
| Order: | \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) | 
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Derived length: | $3$ | 
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $F_9:C_2\times S_4$, of order \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \) | 
| $\operatorname{Aut}(H)$ | $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) | 
| $\operatorname{res}(S)$ | $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(4\)\(\medspace = 2^{2} \) | 
| $W$ | $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) | 
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $9$ | 
| Möbius function | $1$ | 
| Projective image | $C_6^2:D_{12}$ | 
