Properties

Label 864.4669.12.b1.b1
Order $ 2^{3} \cdot 3^{2} $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3\times D_6$
Order: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(1,2)(3,5)(4,6)(8,9), (3,6)(4,5), (7,10)(8,9), (1,6,3), (2,5,4)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.

Ambient group ($G$) information

Description: $C_6^2:D_{12}$
Order: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$F_9:C_2\times S_4$, of order \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $D_6\wr C_2$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
$\operatorname{res}(S)$$S_3^2:C_2^2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$S_3^2:C_2^2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_6^2:D_4$
Normal closure:$A_4:S_3^2$
Core:$C_3:S_3$
Minimal over-subgroups:$S_3^2:C_4$$S_3^2:C_2^2$$D_6:D_6$
Maximal under-subgroups:$C_6:S_3$$C_6\times S_3$$S_3^2$$S_3^2$$C_2\times D_6$
Autjugate subgroups:864.4669.12.b1.a1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$0$
Projective image$C_6^2:D_{12}$