Properties

Label 864.4378.2.g1.a1
Order $ 2^{4} \cdot 3^{3} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2.S_3^3$
Order: \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Index: \(2\)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a, c^{4}, b^{2}, b^{3}, d^{2}, c^{3}d^{3}, c^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, maximal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_6.D_6^2$
Order: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.C_2^6.C_2^2$
$\operatorname{Aut}(H)$ $D_6\times D_6^2$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
$\operatorname{res}(S)$$D_6\times D_6^2$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_2\times S_3^3$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_6.D_6^2$
Complements:$C_2$ $C_2$ $C_2$ $C_2$ $C_2$
Minimal over-subgroups:$C_6.D_6^2$
Maximal under-subgroups:$C_3^2:D_{12}$$C_3^2:D_{12}$$C_6.S_3^2$$C_3^2:D_{12}$$C_6.S_3^2$$C_6.S_3^2$$C_3^3:Q_8$$D_6.D_6$$D_{12}:S_3$$C_{12}.D_6$
Autjugate subgroups:864.4378.2.g1.b1

Other information

Möbius function$-1$
Projective image$C_2\times S_3^3$