Subgroup ($H$) information
| Description: | $C_6^2:C_2$ |
| Order: | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
| Index: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Generators: |
$ac^{3}, d^{2}, d^{3}, c^{6}, b^{2}$
|
| Derived length: | $2$ |
The subgroup is normal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Ambient group ($G$) information
| Description: | $C_6.D_6^2$ |
| Order: | \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Quotient group ($Q$) structure
| Description: | $D_6$ |
| Order: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Automorphism Group: | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Outer Automorphisms: | $C_2$, of order \(2\) |
| Derived length: | $2$ |
The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, an A-group, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^3.C_2^6.C_2^2$ |
| $\operatorname{Aut}(H)$ | $C_6^2:\GL(2,3)$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) |
| $\operatorname{res}(S)$ | $D_6^2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| $W$ | $D_6^2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
Related subgroups
Other information
| Möbius function | $-6$ |
| Projective image | $C_2\times S_3^3$ |