Subgroup ($H$) information
Description: | $S_3$ |
Order: | \(6\)\(\medspace = 2 \cdot 3 \) |
Index: | \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Generators: |
$a, b^{2}c^{6}$
|
Derived length: | $2$ |
The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), hyperelementary for $p = 2$, and rational.
Ambient group ($G$) information
Description: | $(C_3\times C_6^2).D_4$ |
Order: | \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3^3.C_2^6.C_2^2$ |
$\operatorname{Aut}(H)$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
$\operatorname{res}(S)$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(96\)\(\medspace = 2^{5} \cdot 3 \) |
$W$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Related subgroups
Centralizer: | $C_3:C_4$ | ||
Normalizer: | $C_6.D_6$ | ||
Normal closure: | $C_3^2:D_{12}$ | ||
Core: | $C_3$ | ||
Minimal over-subgroups: | $C_3\times S_3$ | $C_3:S_3$ | $D_6$ |
Maximal under-subgroups: | $C_3$ | $C_2$ |
Other information
Number of subgroups in this conjugacy class | $12$ |
Möbius function | $0$ |
Projective image | $(C_3\times C_6^2).D_4$ |