Subgroup ($H$) information
| Description: | $C_3$ |
| Order: | \(3\) |
| Index: | \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
| Exponent: | \(3\) |
| Generators: |
$c^{4}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is characteristic (hence normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.
Ambient group ($G$) information
| Description: | $S_3\times C_{12}:C_{12}$ |
| Order: | \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Quotient group ($Q$) structure
| Description: | $C_{12}^2:C_2$ |
| Order: | \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Automorphism Group: | $C_2\times C_2^4:C_3.D_4\times S_3$ |
| Outer Automorphisms: | $C_2^3:\GL(2,\mathbb{Z}/4)$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \) |
| Nilpotency class: | $-1$ |
| Derived length: | $2$ |
The quotient is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_6^2.C_2^6.C_2^2$ |
| $\operatorname{Aut}(H)$ | $C_2$, of order \(2\) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_2$, of order \(2\) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \) |
| $W$ | $C_2$, of order \(2\) |
Related subgroups
| Centralizer: | $C_{12}:C_6^2$ | |||||
| Normalizer: | $S_3\times C_{12}:C_{12}$ | |||||
| Complements: | $C_{12}^2:C_2$ | |||||
| Minimal over-subgroups: | $C_3^2$ | $C_3^2$ | $C_3^2$ | $C_6$ | $C_6$ | $C_6$ |
| Maximal under-subgroups: | $C_1$ |
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $0$ |
| Projective image | $S_3\times C_{12}:C_{12}$ |