Subgroup ($H$) information
| Description: | $C_2^2$ | 
| Order: | \(4\)\(\medspace = 2^{2} \) | 
| Index: | \(216\)\(\medspace = 2^{3} \cdot 3^{3} \) | 
| Exponent: | \(2\) | 
| Generators: | $a^{2}, d^{6}$ | 
| Nilpotency class: | $1$ | 
| Derived length: | $1$ | 
The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), the Frattini subgroup, a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.
Ambient group ($G$) information
| Description: | $C_6^2.S_4$ | 
| Order: | \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) | 
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) | 
| Derived length: | $4$ | 
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Quotient group ($Q$) structure
| Description: | $C_3^2:S_4$ | 
| Order: | \(216\)\(\medspace = 2^{3} \cdot 3^{3} \) | 
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Automorphism Group: | $C_3^4:(S_4\times \GL(2,3))$, of order \(93312\)\(\medspace = 2^{7} \cdot 3^{6} \) | 
| Outer Automorphisms: | $C_3^2:\GL(2,3)$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \) | 
| Nilpotency class: | $-1$ | 
| Derived length: | $3$ | 
The quotient is nonabelian, monomial (hence solvable), and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^4.Q_8.C_2^2.D_6^2$ | 
| $\operatorname{Aut}(H)$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) | 
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_1$, of order $1$ | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(373248\)\(\medspace = 2^{9} \cdot 3^{6} \) | 
| $W$ | $C_1$, of order $1$ | 
Related subgroups
| Centralizer: | $C_6^2.S_4$ | |||
| Normalizer: | $C_6^2.S_4$ | |||
| Minimal over-subgroups: | $C_2\times C_6$ | $C_2\times C_6$ | $C_2\times C_4$ | $C_2\times C_4$ | 
| Maximal under-subgroups: | $C_2$ | $C_2$ | $C_2$ | 
Other information
| Number of conjugacy classes in this autjugacy class | $1$ | 
| Möbius function | $-2916$ | 
| Projective image | $C_3^2:S_4$ | 
