Properties

Label 864.3014.18.d1
Order $ 2^{4} \cdot 3 $
Index $ 2 \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6:C_8$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $ad^{3}, c^{2}, c^{3}d^{3}, a^{2}c^{3}d^{3}, a^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $(C_3^2\times A_4):C_8$
Order: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times C_3^4.(Q_8\times A_4).D_6$
$\operatorname{Aut}(H)$ $D_4\times D_6$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\operatorname{res}(S)$$C_2^2\times D_6$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
$W$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$C_{12}.D_4$
Normal closure:$(C_3^2\times A_4):C_8$
Core:$C_{12}$
Minimal over-subgroups:$C_{12}.D_6$$C_{12}.D_4$
Maximal under-subgroups:$C_2\times C_{12}$$C_3:C_8$$C_2\times C_8$

Other information

Number of subgroups in this autjugacy class$36$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$0$
Projective image$C_3^2:S_4$