Subgroup ($H$) information
Description: | $C_4\times A_4$ |
Order: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Index: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Generators: |
$a^{2}, d^{3}, bc^{2}, a^{4}, c^{3}$
|
Derived length: | $2$ |
The subgroup is normal, nonabelian, monomial (hence solvable), metabelian, and an A-group.
Ambient group ($G$) information
Description: | $(C_3^2\times A_4):C_8$ |
Order: | \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
Description: | $C_3:S_3$ |
Order: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Automorphism Group: | $C_3^2:\GL(2,3)$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \) |
Outer Automorphisms: | $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Derived length: | $2$ |
The quotient is nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2^2\times C_3^4.(Q_8\times A_4).D_6$ |
$\operatorname{Aut}(H)$ | $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
$\operatorname{res}(S)$ | $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) |
$W$ | $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Related subgroups
Centralizer: | $C_3\times C_{12}$ | ||
Normalizer: | $(C_3^2\times A_4):C_8$ | ||
Minimal over-subgroups: | $C_{12}\times A_4$ | $A_4:C_8$ | |
Maximal under-subgroups: | $C_2\times A_4$ | $C_2^2\times C_4$ | $C_{12}$ |
Other information
Number of subgroups in this autjugacy class | $9$ |
Number of conjugacy classes in this autjugacy class | $9$ |
Möbius function | $-27$ |
Projective image | $C_3^2:S_4$ |