Properties

Label 864.2237.6.j1.a1
Order $ 2^{4} \cdot 3^{2} $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$A_4:C_{12}$
Order: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $ab^{3}, d^{3}, c^{3}d^{3}, c^{2}, b^{6}, b^{4}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_3^2:(C_4\times S_4)$
Order: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times C_6^2:D_6$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $C_2^2\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\operatorname{res}(S)$$C_2^2\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_2^3.S_3^2$
Normal closure:$(C_3\times C_6).S_4$
Core:$C_6\times A_4$
Minimal over-subgroups:$(C_3\times C_6).S_4$$C_2^3.S_3^2$
Maximal under-subgroups:$C_6\times A_4$$C_2^2:C_{12}$$A_4:C_4$$C_3:C_{12}$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$1$
Projective image$C_6^2:D_6$