Properties

Label 862488000.a.326700._.C
Order $ 2^{4} \cdot 3 \cdot 5 \cdot 11 $
Index $ 2^{2} \cdot 3^{3} \cdot 5^{2} \cdot 11^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times \PSL(2,11)$
Order: \(2640\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 11 \)
Index: \(326700\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 5^{2} \cdot 11^{2} \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Generators: $\langle(25,28,32)(26,30,33)(27,29,31), (1,5)(2,10)(6,9)(7,8), (13,16)(14,19)(15,22)(20,21), (23,31)(24,30)(26,28)(29,33)\rangle$ Copy content Toggle raw display
Derived length: $1$

The subgroup is nonabelian, an A-group, and nonsolvable.

Ambient group ($G$) information

Description: $\PSL(2,11)\wr C_3$
Order: \(862488000\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5^{3} \cdot 11^{3} \)
Exponent: \(990\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(3449952000\)\(\medspace = 2^{8} \cdot 3^{4} \cdot 5^{3} \cdot 11^{3} \)
$\operatorname{Aut}(H)$ $S_3\times \PGL(2,11)$, of order \(7920\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$9075$
Möbius function not computed
Projective image not computed